
International Journal of Scientific & Engineering Research, Volume 2, Issue 11, November-2011 1

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

Algorithmic Resolution of an ER Schema into
Relational DDL Statements using Artificial

Intelligence
Manuj Darbari, Hasan Ahmed, Sunita Bansal

Abstract—The concept of this paper helps resolve an ER schema into an appropriate relational Data Description Language (herein standard SQL
statements) while considering all the inherent complexity of such a schema. The algorithm resolves all the relationships between the concerned entities
(even weak ones), their associated keys – primary and foreign, attributes – simple, composite and multivalued and relationships types from binary to n-
ary. The algorithm (as implemented in ANSI C) is smart enough to consider the case of cascading weak entities.

Index Terms— Entity Relationship Schemas, SQL statements, relational tables.

—————————— ——————————

1 INTRODUCTION

ften a need is felt by applications programmers, comput-
er geeks and the like to translate a given ER schema into

SQL statements. Such a translation requires a concerted effort
to logically optimize that schema considering all the possibili-
ties of entity relationships, primary and foreign keys, all the
variants of attributes, weak and owner entities, etc. This leads
to a very cautious effort in devising actual SQL tables.

We have just automated this intelligent effort. The user,
just, has to input his ER schema in a defined syntax and
with a click of mouse, she could get an optimized set of
SQL statements which can be readily applied to a stan-
dard SQL engine; thereby, creating suitable database
tables [1,4].

2. THEORETICAL BASES

Normally, we have ER schema which encompasses enti-
ties (regular and weak) delved in relationships amongst
themselves. These relationships can be varied including
not only binary 1:1 ones but also binary 1:N, binary M:N

and N-ary relationships.

We, then, bring in the case of weak entities which have regular
owner entities. In these cases, due consideration is to be given
to a case (or similar cases) wherein the owner entity of a weak

entity is, itself, a weak entity whose owner is a regular entity.
Now, we ought to reasonably handle primary and foreign
keys. Besides, not to be forgotten is optimized appropriation
of attributes of all the entities concerned. Attributes can also
come in different variations which demand different interpre-
tations. For example, simple attributes of an entity is to be
handled differently from the entity’s composite attributes
which, in turn, needs to be handled differently from multi-
valued attributes of that particular entity.

Our paper does resolve such complex ER schemas into
optimized relational SQL statements which can be applied
to database engines. Hence, a great reduction in manual
effort would be the result.

In our C code, we have adopted the standard mechanisms
of ER schema to relational mapping [1,2,3]. Here, we go
on to mention how effect such a scheme considering spe-
cific cases, one by one.

2.1. REGULAR ENTITIES

For every regular entity E, there is a relation R having all
the attributes of E. We include simple components of a
composite attribute (in that case) and choose one of the
keys of E as a primary key of R. If that chosen key is com-
posite, the set of simple attributes that form it will form
the primary key of R.

2.2. WEAK ENTITIES

For every weak entity W with owner entity E, there is a re-
lation R having all the simple attributes (or simple compo-
nents of composite attributes) of W. We, also, include as

O

————————————————

 Manuj Darbari is working as Associate Professor with the Department of
InfomationTechnology in Babu Banarsi Das National Institute of Technolo-
gy and Management,Lucknow, India E-mail: manujuma@gmail.com

 Hasan Ahmed, Consultant at SaharaNext, Lucknow, India, hasansin-
box@gmail.com

 Sunita Bansal, Research Scholar, Department of Computer Science, JJTU
University, Rajasthan, Sunita_bansal301@rediffmail.com

mailto:manujuma@gmail.com
mailto:hasansinbox@gmail.com
mailto:hasansinbox@gmail.com

International Journal of Scientific & Engineering Research, Volume 2, Issue 11, November-2011 2

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

foreign key attribute(s), the primary key attribute(s) of the
relation that corresponds to the owner entity type. This
helps the identifying relationship type of W. Herein, the
primary key of R would be the combination of the primary
key(s) of owner entity(-ies) and the partial key of W, if
any. Here, our code also considers the case of that weak
entity whose owner entity is also a weak entity and, in
turn, whose owner entity is a regular entity. Our algo-
rithm can handle such a cascading to a good number of
weak entity levels. In such cases, the naming and genera-
tion of primary key(s) of resultant relations of those weak
entities is intelligently handled by our code.

2.3. BINARY RELATIONSHIP

For mapping binary 1:1 relationship, the most optimizing me-

thod is to go through foreign key approach, which is em-

ployed by us. We, first, identify the two relations S and T par-

ticipating in relationship R. We choose that entity in the role of

S which totally participates in R. And in S, we include as a

foreign key, the primary key of T. Also, we include all the

simple attributes (or simple components of composite

attributes) of 1:1 relationship R as attributes of S.

For each regular binary 1:N relationship R, we identify the
relation S that is the participating entity on the N side of
R. Here, we include as foreign key in S, the primary key of
relation T (which is the relation representing the other ent-
ity of R). Also, we include all the simple attributes (or
simple components of composite attributes) of 1:N rela-
tionship R as attributes of S.

For the case of binary M:N relationship R, we create a new
relationship S to represent R while including as foreign
key attributes in S all the primary keys of the relations
that represent the participating entity types as their com-
bination will form the primary key of S. Apart from this,
we include any/all simple attributes of the M:N relation-
ship (or simple components of composite attributes) as
attributes of S.

2.3. MULTI VALUED ATTRIBUTE

For every multi-valued attribute A, we create a new rela-
tion R which includes an attribute corresponding to A,
with the primary key attribute P as a foreign key in R, of
the relation that represents the entity type that has A as an
attribute. In such a case, the primary key of R would be
the combination of A and P. Of course, if the multi-valued
attribute tends to be composite, we include all its simple
components.

2.3. N-ARRAY RELATIONSHIP

For every n-ary relationship R (n>2), we create a new rela-
tion S to represent R while including the foreign key
attributes in S, the primary keys of the relations that
represent the participating entity types. Here again, we
include simple attributes of the n-ary relationship type (or
simple components of composite attributes) as attributes
of S. The primary key of S is usually a combination of all
the foreign keys that reference the relations representing
the participating entity types. But, we do maintain an ex-
ception here. If the cardinality constraints on any of the
entity types K participating in R is 1, then the primary key
of S should not include the foreign key attribute that ref-
erences the relation K’ corresponding to K.

3. ALGORITHMIC IMPLEMENTATION

The algorithm is implemented in ANSI C. The algorithm
deals with the ER schema complexities in the order: regular
entities, weak entities, binary relationships, multi-valued
attributes and n-ary relationships, respectively. The actual
code can be requested from the authors’ email contacts.

The algorithm is smart enough to rename and/or automati-
cally generate new table names, attribute names, keys, etc.
Also, the algorithm picks up other important characteristics
of attributes such as it being null (or not null) and being
unique (or not unique).

The algorithm extensively uses linked lists as data struc-
tures. On the other hand, it does use file handling in C. The
use of counters and accumulators is, also, quite common.

As for demonstrability purpose in the example quoted, only
‘int’ and ‘varchar’ types of attributes (of varying siz-
es/spaces) have been taken. However, the code is scalable to
other data types as well.

The constraints are as follows. The input file has to be
strongly typed as the parser moves through character by
character. Composite attributes have to be given as simple
components of the parent attribute. As per current imple-
mentation, the attribute has seven fields: attribute name, da-
ta type, whether null, whether unique, whether a part of
primary key, whether default, whether multi-valued. The
only assumption in the input file is, at least, one output file.

International Journal of Scientific & Engineering Research, Volume 2, Issue 11, November-2011 3

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

Figure 1. Some macros and linked list definitions.

The snapshot of parts of algorithm code is given in figures 1
and 2. The sample file is depicted as figure 3 while figure 4
depicts the resultant output file.

Figure 2 : Start of the main Function

The sample file is depicted in figure 3 as:

The snapshot of parts of algorithm code is given in figures 1
and 2. The sample file is depicted as figure 3 while figure 4
depicts the resultant output file.

International Journal of Scientific & Engineering Research, Volume 2, Issue 11, November-2011 4

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

Further extension of the output gives the result as:

 Further extension of the output gives the result as:

International Journal of Scientific & Engineering Research, Volume 2, Issue 11, November-2011 5

ISSN 2229-5518

IJSER © 2011

http://www.ijser.org

Figure 4: Generated SQL File

4. CONCLUSION AND FUTURE SCOPE

The concept of this algorithm can be applied for further
resolution of complexities like specialization and class dia-
grams (as in OOP and data modeling). Also, with the help
of GUI, this could be time-saver tool from advanced and
naïve users to scholars and practitioners.

References

[1] Chen, P. 1976. The Entity-Relationship Model--Toward a Unified

View of Data. In: ACM Transactions on Database Systems 1/1/1976

ACM-Press ISSN 0362-5915, S.

[2] Elmasri, Navathe, Somayajulu, Gupta. 2006. Fundamentals of Data-

base Systems. Pearson Education. ISBN 81-7758-476-6.

[3] CODD, E.F. Normalized data base structure: A brief tutorial. Proc.

ACM-SIGFIDET 1971, Workshop, San Diego, Calif., Nov. 1971, pp. 1-

18.

[4] Codd, E.F. (1990). The Relational Model for Database Management

(Version 2 ed.). Addison Wesley Publishing Company. ISBN 0-201-

14192-2.

